Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference.

نویسندگان

  • Natasha J Caplen
  • J Paul Taylor
  • Victoria S Statham
  • Fumiaki Tanaka
  • Andrew Fire
  • Richard A Morgan
چکیده

RNA interference (RNAi) is a mechanism that appears to control unwanted gene expression in a wide range of species. In Drosophila, RNAi is most effectively induced by double-stranded RNAs (dsRNAs) of over approximately 80 nucleotides (nt) and in mammalian cells an RNAi-like inhibition of gene expression has been shown to be mediated by dsRNAs of approximately 21-23 nt. To test if RNAi can be used to specifically down-regulate a human disease-related transcript we have used Drosophila and human tissue culture models of the dominant genetic disorder spinobulbar muscular atrophy (SBMA). A variety of different dsRNAs were assessed for the ability to inhibit expression of transcripts that included a truncated human androgen receptor (ar) gene containing different CAG repeat lengths (16-112 repeats). In Drosophila cells, dsRNAs corresponding to non-repetitive sequences mediated a high degree of sequence-specific inhibition, whereas RNA duplexes containing CAG repeat tracts only induced gene-specific inhibition when flanking ar sequences were included; dsRNAs containing various lengths of CAG repeats plus ar sequences were unable to induce allele-specific interference. In mammalian cells we tested sequence-specific small dsRNAs of 22 nt; these rescued the toxicity and caspase-3 activation induced by plasmids expressing a transcript encoding an expanded polyglutamine tract. This study demonstrates the feasibility of targeting a transcript associated with an important group of genetic diseases by RNAi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly I:C Delivery into J774.1 & RAW264.7 Macrophages Induces Rapid Cell Death

Background: Cytosolic double-stranded RNA (dsRNA) is an important ‘molecular signature’ for the detection of intracellular viral infections. Although intracellular dsRNA is a known potent inducer of apoptosis, the optimal time and dose for the onset of dsRNA-mediated apoptosis have not been studied in detail. Objective: To perform an accurate temporal assessment of the cell death responses in d...

متن کامل

Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells.

Double-stranded RNA (dsRNA) fragments are readily internalized and processed by Drosophila S2 cells, making these cells a widely used tool for the analysis of gene function by gene silencing through RNA interference (RNAi). The underlying mechanisms are insufficiently understood. To identify components of the RNAi pathway in S2 cells, we developed a screen based on rescue from RNAi-induced leth...

متن کامل

Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana.

We investigated the potential of double-stranded RNA interference (RNAi) with gene activity in Arabidopsis thaliana. To construct transformation vectors that produce RNAs capable of duplex formation, gene-specific sequences in the sense and antisense orientations were linked and placed under the control of a strong viral promoter. When introduced into the genome of A. thaliana by Agrobacterium-...

متن کامل

Construction of a Minigenome Rescue System for Measles Virus, AIK-c Strain

Background:In the recent decade, the reverse genetics method has been broadly used for rescue of negative-stranded RNA viruses from cDNA or viral minigenomes. This technique has been applied to study different steps in virus replication and virus-host interactions. Reverse genetics could also be implemented for design of new vaccines. The T7 RNA polymerase activity as well as virus (nucleocapsi...

متن کامل

Enhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase

Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2002